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Abstract: In this study, we attempt to establish an alternative method for estimating the groundwater
levels and the specific yields of an unconfined aquifer for the evaluation of potential groundwater
reservoirs. We first converted the inverted resistivity into the normalized water content. Then, we
inverted the parameters of the Brooks-Corey model from the vertical profiles of the water content
by assuming that the suction head was in proportion to the elevation regarding a predefined base
level. Lastly, we estimated the groundwater level, the theoretical specific yield, and the specific
yield capacity from the Brooks-Corey parameters at every survey site in the study area. The contour
maps of the time-lapse groundwater levels show that the groundwater flows downstream, with a
higher hydraulic gradient near the river channel than in the area away from the main channel. We
conclude that the estimated maximum specific yield capacities are consistent with that derived from
the pumping tests in the nearby observation well. Additionally, the specific yield capacities are only
three quarters to two thirds of the theoretical specific yields derived from the difference between the
residual and saturated water contents in the Brooks-Corey model. We conclude that the distribution
pattern of the specific yields had been subjected to the distribution of natural river sediments in the
Minzu Basin, since the modern channel was artificially modified. Although we had to make some
simple assumptions for the estimations, the results show that the surface resistivity surveys provide
reasonable estimations of the hydraulic parameters for a preliminary assessment in an area with few
available wells.

Keywords: groundwater; time-lapse; resistivity imaging method; specific yield

1. Introduction

Climate change has boosted the frequency of extreme weather events, such as floods
and droughts. To cope with the water shortage from super-drought events, it is feasible to
store excess surface water during the wet season in subsurface reservoirs, i.e., groundwater
reservoirs, for use in the drought seasons. As a result, it is important to know the suitable ar-
eas for potential groundwater reservoirs. To quickly evaluate the potential of groundwater
reservoirs, we developed an alternative method for applying time-lapse resistivity measure-
ments to groundwater-level estimations. We estimated the specific yields of an unconfined
aquifer in the Minzu Basin in central Taiwan. The basin consists of thick gravel layers and
is considered to be a potential groundwater reservoir. However, there are few borehole
records for the basin and, therefore, we were able to use only non-destructive geophysical
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methods for our evaluation. Several studies have used qualitative resistivity methods to
identify groundwater-related physical and chemical properties. For example, Michot and
Benderitter [1] used resistivity surveys to monitor the variations in soil-based water content.
Berthold and Bentley [2] integrated hydrogeology and geophysics in the Canadian plains
for groundwater replenishment research. Additionally, Rayner and Bentley [3] used resis-
tivity imaging methods to determine the hydrogeological settings of aquifers in fractured
rocks. Recently, researchers have turned their attention to quantitative estimations of hy-
drogeological parameters. These estimations rest on low-cost, non-destructive geophysical
methods, especially the surface resistivity method. Frohlich and Kelly [4] used Archie’s
law and one-dimensional resistivity results to derive specific yields based on resistivity
measurement differences in saturated and unsaturated layers. To calculate specific yields,
Dietrich and Carrera [5] used a similar approach with time-lapse two-dimensional resistiv-
ity surveys. With a simplified Archie’s law, they first transferred their inverted resistivity
results into the water contents in soils, before calculating the differences in water volumes;
then, the researchers estimated the specific yield by dividing the water volume change
into the water-level difference, which itself had been calculated from the piezometer next
to the survey line. Moreover, Chang and Chang [6] used time-lapse resistivity imaging
during a pumping test to estimate the hydraulic conductivities and the specific yields of
unconfined aquifers. The aforementioned results show that measured vertical resistivity
changes can indicate the depths of groundwater tables, because they are consistent with
drastic changes in resistivity.

The surface resistivity method provides an alternative way to appraise regional hydro-
geological parameters when few or even zero observation wells are available for a direct
calculation of these parameters. In the present study, we evaluate hydraulic parameters
by further incorporating in situ surface resistivity measurements into soil-water charac-
teristic models. Our aim is to acquire relative parameters that can be used for appraising
potential groundwater reservoirs regarding, for example, regional groundwater depths
and specific yields. Our attempted approach may constitute an alternative and effective
method by which researchers can calculate regional hydrogeological parameters with
limited available boreholes.

2. Materials and Methods
2.1. The Survey Area and the Design of the Electrical Resistivity Imaging

The annual precipitation in Taiwan is about 2500 mm/year, which is 2.5 times the
global average rainfall. The weather records show a significant difference between the
precipitation of the wet season (May to October) and dry season (November to April).
Precipitation in the wet season accounts for 77% of annual precipitation in the central
region of Taiwan, and typhoon events are the major sources of precipitation in the wet
season [7]. However, it is projected that the precipitation amount in the wet season will be
increased to over 82–88% of annual rainfall in the region by the end of the 21st century [8].
Hence, we have to look for an enhanced water management plan to meet the needs of dry
seasons in the future.

Our survey area is located in the Minzu Basin in Nantou County in Central Taiwan
(Figure 1).

The Minzu Basin is a piggyback basin formed by the foreland thrust faults, the
Chelungpu Fault in the east and the Changhua Fault in the west. The Choushui River cuts
through the parallel thrust faults and provides the area with sediment. The west side of the
basin is connected to the Choushui River alluvial fan through the Bizetou Pass between
the Bagua and Douliu hills, which were created by the Changhua thrust fault, whereas
the east side is bounded by the Chelungpu thrust fault. The Chingshui River from the
south merges into the Choushui River near the Bizetou Pass. Sediment from these rivers is
deposited into the Minzu Basin. Because the bounding Changhua and Chelungpu faults
are both westward thrusts, one would expect that the thickness of unconsolidated sediment
in the basin may range from several meters in the east to over a hundred meters in the west.
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The sediment deposits are mainly composed of gravel and sand, and the subsequent loose
structure has good permeability. Therefore, the Minzu Basin is regarded as an area with
extremely high potential for groundwater recharge.
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Figure 1. The geographic map of the Minzu Basin (located in the area enclosed by the black dotted
line) and our study area (the red rectangular area). The red star represents the only observation well,
the Xinming well, in the basin.

Our resistivity survey lines are set in the north bank of the Choushui River, and
are roughly centered around the Xinming observation well, completed by the Central
Geological Survey (CGS) of Taiwan. To obtain estimation results from the resistivity
surveys, we used the Xinming well for calibration purposes. From the borehole records, the
deposits that are 100 m deep mainly consist of sand and gravel with a logging resistivity
higher than 100 Ohm-m in both the 16”and 64” measurements (Figure 2). Figure 3 presents
the distribution of the survey lines. The orientations of survey lines are mostly parallel to
the Choushui River, thus reducing the effects caused by the lateral variation from the river
sedimentation. Owing to site-specific conditions, there are a few exceptions wherein the
survey lines are not oriented in a parallel direction.

We conducted time-lapse surveys roughly every three months across the dry and
wet seasons at the same survey sites using Wenner–Schlumberger configuration with a
1 m electrode interval. The data set includes data collected in December of 2016 (the dry
season), in March of 2017 (the dry season), in June of 2017 (the wet season), in August of
2017 (the wet season), from the end of September to early October of 2017 (the wet season),
in January of 2018 (the dry season), and in March of 2018 (the dry season). In December of
2016, we initiated pilot surveys at the Min_01, Min_02, Min_03, Min_04, Min_05, Min_06,
and Min_08 sites. The pilot surveys were designed to help with the selection of proper
sites; subsequently, we decided to discard the Min_07 site owing to its poor condition. Sites
Min2_01, Min2_02, Min2_03, Min2_04, and Min2_06 were added as additional survey sites
in March of 2017, and a further site, Min3_01 was added in June of 2017. The resistivity
surveys were conducted at the aforementioned sites in August and September of 2017.
The survey project was completed at the end of 2017, yet we decided to keep conducting
resistivity surveys at the Min_01, Min_02, Min_03, Min_05, Min_06, Min2_01, Min2_02,
and Min3_01 sites in January and March of 2018.
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2.2. The Resistivity Survey and Depth Estimation for the Groundwater Table

Resistivity exploration uses direct current or low-frequency alternating current to
establish an artificial underground electric field with a pair of electrodes. One can measure
the resulting field with another pair of electrodes to calculate the apparent resistivity. The
measured apparent resistivity is the comprehensive effect of all the electrical strata under
the corresponding electrode configurations. Therefore, a further inversion approach is
needed to derive a subsurface resistivity model.

There are several physical factors that may affect the measured subsurface resistivity,
including lithology, mineral composition, water content, porosity, pore structure and
connectivity, pore water composition [9], and temperature variations [10]. One can measure
subsurface resistivity for various ranges and depths by changing the aforementioned
electrode configurations, including electrode distance, and the position and sequence of
measurements. Each configuration, or array, has its own advantages and limitations in
subsurface object detections. We forward readers to Zhou [11] for the comprehensive
principles of the resistivity methods and array configurations.

We used the 4-point light 10 W resistivity meter and the active electrode (ActEle)
system (Lippmann Geophysical Instruments (LGM), Schaufling, Bayern) [12] for the field
data measurements. We chose the Wenner–Schlumberger arrays with 1 m electrode spacing
for the present study data measurements, since they often yield high signal-to-noise ratios
and have better sensitivity to horizontal structures [13,14]. The two-dimensional (2D)
inverse software used in this research is the EarthImager2DTM Version 2.4.2.627 (Advanced
Geosciences Inc. (AGI), Austin, TX, USA) [15]. The EarthImager2DTM involves finite-
element forward solutions and an iterative conjugate gradient inversion scheme, both of
which facilitate calculations of the optimal resistivity models [16,17]. A detailed review of
the inversion techniques for resistivity surveys can be found in Sharma and Verma [18].

We adopted a similar procedure to Dietrich and Carrera [5] for estimating the water
contents in a column profile at each survey sites. According to Archie’s Law [9], we can
clarify how formation resistivity relates to porosity, saturation, and pore water resistivity
for a clay-free matrix:

ρt = αρwφ−nSw
−m, (1)

where ρt is the formation resistivity, ρw is the pore water resistivity, φ is the porosity, Sw is
the saturation, and m and n are the saturation index and cementation index, respectively.
Since the deposits mainly consist of sand and gravel within 100 m deep in our study area,
according to the borehole records, we are able to use Equation (1) for the estimation of
the hydrological parameters without applying the correction for clay surface conduction
effects. For general homogeneous rocks and soils, m ranges from 1.8 to 2.2, and the value of
n is about 2; thus, considering m = n ∼= 2, Equation (1) is approximated as:

ρt = αρwθ−2, (2)

where θ is the volumetric water content.
Furthermore, if we assume that the sediment textures are homogeneous within the

exploration ranges, and that resistivity varies only with the water saturation, we can obtain
the normalized relative saturation, Sr, at different depths in the vadose zone:

Sr =
θu

θs
=

√
ρs

ρu
. (3)

In Equation (3), θu is the unsaturated water content, ρu is the unsaturated layer
formation resistivity, θs is the saturated layer volume water content, and ρs represents the
saturated layer formation resistivity.
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If we can estimate the average porosity, i.e., φA, of soils or rocks from other experiments
or particle size analysis data, we can further obtain the normalized volumetric water
content:

θ = SrφA. (4)

Figure 4 presents an example in which normalized volumetric water content varies
from the ground surface to the saturated layer, as estimated from selected resistivity
measurements in an unconfined aquifer.
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Figure 4. The selected vertical profiles of the normalized volumetric water content from resistivity
measurements from the Min_01 survey line. The dashed curve indicates the fitted Brooks-Corey
model regarding the relationship between normalized volumetric water content and height from a
presumed baseline. The dotted line indicates the air entry suction and the dashed level line represents
the observed groundwater table in the nearby Xinming observation well.

The data of the topmost 2 m are excluded because they represent the properties of the
surface soil layer instead of the properties of the gravel aquifer. The vertical change in the
water content in Figure 4 exhibits a similar trend relative to the soil-water characteristic
curve developed in lab experiments, e.g., [19,20]. Therefore, if we assume the suction head
is linearly proportional to the elevation of the groundwater level in the unconfined aquifer,
as discussed in Krahn and Fredlund [21], we would be able to accomplish two tasks: first,
estimate the relative hydraulic parameters in the vadose zone [20], and second, estimate
the groundwater level quantitatively with the soil-water characteristic model.

There are several empirical models, including the Brooks-Corey model [22] and the Van
Genuchten model [23], that describe the physical relationships between the water contents
and suction in the vadose zone. If we assume that the suction head in the unsaturated zone
is proportional to the height of the groundwater level, we should use the Brooks-Corey
model for the soil-water characteristic curves [22]:

θ(h) =


θr + (θs − θr)

(
ha
h

)λ
, f or ha

h < 1

θs, f or ha
h ≥ 1

(5)
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where θ(h) is the unsaturated water content (L3L−3), h is the suction head (L) and is
approximated as the air entry height of the presumed groundwater table, θs is the saturated
water content (L3L−3) and is set to be φA in this case, θr is the residual water content
(L3L−3), λ is the Brooks-Corey parameter, and ha corresponds to the air entry suction head.

If we designate a saturated base with a depth of Hs and assume that the suction
head is proportional to the height of the presumed saturated base, we may estimate the
apparent air entry suction head relative to the same base, ha, with the Brooks-Corey model
of soil-water characteristic curves. Hence, we can calculate the depth of the near-saturated
surface of air entry suction, D, as:

D = Hs − ha. (6)

In reality, the true groundwater table may be lower than the surface corresponding
to the air entry suction. Hence, we may apply the correction for the approximation if we
can obtain the true groundwater depth from the observation well. We can then use the
correction to construct the distribution of regional groundwater levels at places without
wells. We will discuss the correction later in the discussion.

3. Results
3.1. The Time-Lapse ERI Surveys

Except for the limited measurements in the pilot study, we started the Minzu Basin
resistivity surveys in March of 2017. Figure 5 shows the inverted resistivity images for
the surveys conducted at all sites in September of 2017, and Figure 6 shows the time-
lapse resistivity images collected at the Min_01 site from December of 2016 to March of
2018. The Min_01 and Min_02 sites correspond to the survey lines that are closest to the
Xinming observation well. Min_01 is located upstream of the Xinming well, while Min_02
is located downstream of the Xinming well, as shown in Figure 3. We found that a layer
with resistivity from 20 to 100 Ohm-m lies between 1 m and 2 m below the ground surface
in Min_01. The resistivity layer represents the soil layer of the rice field. Below the soil layer,
the resistivity increases to over 400 Ohm-m. This area is between 2 m and 8 m below the soil
layer. This relatively resistive layer may represent the unsaturated sand and gravel layer,
which corresponds to the borehole logs in the Xinming well. Below 8 m depth, the resistivity
value decreases from a peak of over 600 Ohm-m to a level between 330 and 230 Ohm-m.
This change may reflect the effect of the increasing water content from the lower vadose
zone to the saturation zone. Regarding changes in vertical resistivity, the inverted image
of Min_02 presents a trend similar to that of Min_01. The resistivity value is between
40 Ohm-m and 70 Ohm-m for the shallow soil layer in the inverted image, and the region
that is between 1 m and 5 m below the top layer consists of unsaturated sand and gravel
with a resistivity between 400 Ohm-m and 1500 Ohm-m. Below 5 m depth, the resistivity
decreases to less than 100 Ohm-m and exhibits the wetting feature of the sand and gravel.
Among all resistivity survey lines, Min_08 is the northernmost one. Unlike the other survey
lines, with an average resistivity that exceeds between 150 Ohm-m and 200 Ohm-m, the
average resistivity of Min_08 is lower than 100 Ohm-m. The contact between the surface
resistivity layer (resistivity higher than 100 Ohm-m) and the underlying conductivity layer
(resistivity less than 50 Ohm-m) exhibits a wavy surface. The conductivity layer with a
resistivity of less than 50 Ohm-m may imply that Min_08 has sediments containing more
clay-like minerals than the other survey sites contain. Min3_01 and Min2_02 are the two
southernmost sites among the survey lines. The two lines exhibit a resistivity pattern similar
to that of Min_01. From the surface to a depth of about 2 m, soils have a resistivity of less
than 80 Ohm-m in the inverted images of Min2_02 and Min3_01. The resistivity increases
to over 300 Ohm-m in the vadose zone, and gradually decreases to about 100 Ohm-m in
the saturated zone in both sites.

In the Minzu area, winter is the dry season and summer is the wet season. The inverted
time-lapse images of Min_01 between December of 2016 and March of 2018 reveal the
significant variations in the resistivity in the vadose zone between the dry and wet seasons.
The region with a resistivity value higher than 500 Ohm-m mainly experiences this in



Water 2022, 14, 420 8 of 18

December of 2016, and peak resistivity in the vadose zone can reach over 1500 Ohm-m. The
resistivity region shrank from December of 2016 to August of 2017. This trend indicates
that water content in the vadose zone increased owing to an increase in rainfall recharge.
The resistivity region with a resistivity higher than 50 Ohm-m expanded from August of
2017 to January of 2018, because the rainfall decreased from the wet season into the dry
season. The resistivity region in the inverted image for March of 2018 is slightly smaller
than in January of 2018. The resistivity variations can be linked to changes in the vadose
zone’s water content, according to Archie’s law in Equation (1). Hence, one may be able
to estimate further the variation of water contents and the groundwater table with the
inverted resistivity images collected in different seasons.
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3.2. The Inverted Brooks-Corey Model

Using Equations (1)–(6), we were able to evaluate the parameters in the Brooks-Corey
model for individual resistivity surveys. We selected five vertical profiles in the central
part of each resistivity survey line for the estimation of water content. We used the entire
observation period’s lowest water content as the residual water content, and assumed
that the saturated water content would be equal to the average porosity, 0.26. Then, we
could invert the air entry suction/heights from the base depth, ha, and the Brooks-Corey
parameter, λ, by minimizing the root mean square differences between the estimated and
measured water content. We used the conjugated gradient methods with the EXCEL Solver
to optimize the minimum object equation in the inversion.

Table 1 shows an example of the fitted parameters of the Brooks-Corey curve at the
Min_01 site. The observed residual water content is about 0.05. Additionally, the fitted air
entry heights vary from 4.8 m to 8.6 m, and are higher in the data sets for the June, August,
and September wet season of 2017 than in the data sets for the observed months of the
dry season. The Brooks-Corey parameters also vary from 0.5 m in the dry season to about
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2.8 m in the wet season. Figure 7 shows the fitted Brooks-Corey curves for the time-lapse
measurements at different survey sites.
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Table 1. The estimated parameters of the Brooks-Corey model from the time-lapse resistivity surveys
at the Min_01 survey site from 2016 to 2018. (θs and θr: the saturated and residual water content, λ:
Brooks-Corey parameter, ha: the air entry suction head).

Month December 2016 March 2017 June 2017 August 2017 September 2017 January 2018 March 2018

λ 0.50 0.80 2.35 2.13 2.76 0.52 0.67
ha (m) 4.83 5.13 8.22 7.79 8.57 5.42 5.16

θs 0.26 0.26 0.26 0.26 0.26 0.26 0.26
θr 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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The dotted curves indicate the models for the months in the wet season, and the solid curves are the
fitted models for the months in the dry season. (a) The sites with fitted curves in the wet seasons
have higher air entry heights than those in the dry seasons. (b) The sites with some fitted curves in
the dry seasons have higher air entry heights than those in the wet seasons.

Several sites—namely, Min_01, Min_04, Min_08, Min2_01, Min2_03, and Min2_04
(Figure 7a)—show that the fitted curves in the wet season have higher air entry heights than
those in the dry season. Other sites—namely, Min_02, Min_03, Min_05, Min2_02, Min2_06,
and Min3_01 (Figure 7b)—show that the air entry heights collected in some months during
the dry season are higher than those collected during the wet season. In Figure 7b, we also
observed that the air entry heights in March of 2017 are higher than those in the wet season
at the upstream sites, Min_02, Min_03, and Min2_06. Min2_02 and Min3_01 are located
downstream, and show no significant difference between their curves for the wet and dry
seasons. Additionally, site Min_05, which is located near the northern foothill, exhibits a
huge variation between the wet and dry season curves.
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3.3. Estimation of Groundwater Levels

Equation (6) suggests that one may estimate the regional groundwater from the resis-
tivity data after one corrects for differences between the estimated depth of the air entry
suction and the measured groundwater depth from an observation well. The observed
records of the Xinming well show two different groundwater levels. The levels are con-
sistent, but the shallow one is about 1.5 m higher than the deep one. Because Min_01 is
the closest survey line to the Xinming well, and may reflect shallow groundwater vari-
ations, we used the observed shallow groundwater level in the Xinming well and the
measurements from Min_01 for the corrections. Regarding time-lapse measurements, the
average difference between the observed shallow groundwater depth and the estimated
air entry depth is about 1.7 m. Thus, we corrected the depth of the groundwater table by
subtracting the average difference from the estimated air entry depths. By considering the
ground levels, we estimated the groundwater levels from the resistivity measurements.
Figure 8a shows the correlation between the estimated and observed groundwater levels
in both Min_01 and Min_02. With Min_02, which is located near the Xinming well in the
downstream area, we tested whether or not the correction value of 1.7 m, estimated from
Min_01, was still applicable for Min_02. The slope of the regression line is about 1, and the
coefficient of determination R2 is about 0.82. Thus, there is good agreement between the
estimated and observed groundwater levels. In addition, Figure 8b presents two important
sets of information: first, the estimated groundwater levels at the Min_01 and Min_02 sites,
and second, the variation in the observed groundwater levels in the shallow and deep
observation wells. The estimated groundwater levels at Min_01 are consistent with the mea-
surements in the shallow observation well. Interestingly, we observed that the estimated
groundwater levels at Min_02 were consistent with the observed groundwater levels in the
shallow well before March of 2017, yet the estimated groundwater levels agree better with
those measured in the deep well after Jun of 2017. The double groundwater levels observed
from the Min_01 site, Min_02 site, and Xinming well in the unconfined aquifer next to the
river channel may suggest an interaction between the perched river subsurface flow and
the regional groundwater base flow, e.g., [24]. Table 2 lists the corrected groundwater levels
measured at different survey sites during the observation period between 2016 and 2018.

Table 2. The ground levels and estimated groundwater levels were collected at survey sites during
December of 2016 and March of 2018.

Survey
Line

X-Corr
(TM97)

Y-Corr
(TM97)

Ground
Level (m)

Groundwater Level (m)

December
2016

March
2017

June
2017

August
2017

September
2017

January
2018

March
2018

Min_01 219,425.6 2,634,326.9 148 135.1 135.4 138.5 138.2 138.9 135.7 135.5
Min_02 219,009.2 2,634,177.1 146.2 134.8 136.1 136.2 136.8 134.5 133.8 133.7
Min_03 218,467.3 2,634,382.7 143.5 130.0 133.1 132.4 133.4 134.6 129.0 130.1
Min_04 219,170.5 2,634,928.7 150 134.0 133.3 138.3 138.8 135.5
Min_05 218,182.1 2,634,650.5 142 128.9 127.7 127.8 130.8 134.2 125.6 129.8
Min_08 218,874.6 2,635,552.2 149 137.1 136.8 139.6 139.3 138.6

Min2_01 217,203.4 2,633,563.7 135 121.6 126.1 126.9 126.0 122.3 124.9
Min2_02 216,878.5 2,633,495.5 131.2 117.0 119.1 120.3 118.9 118.3 119.6
Min2_03 217,496.7 2,634,252.7 135 125.8 128.2 128.3 127.3
Min2_04 218,269.1 2,633,408.5 137 120.5 122.1 123.4 122.1
Min2_06 218,851.7 2,634,480.1 145.5 132.3 133.9 132.6 131.9
Min3_01 217,554.3 2,632,769.4 129 117.4 118.1 119.2 118.7 118.4
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Figure 8. (a) The correlation between the estimated and observed groundwater levels in the Min_01
and Min_02 sites. The solid line is the linear regression line with a slope of about 1 and an R2 of about
0.82. (b) A comparison of the estimated groundwater levels at the Min_01 and Min_02 sites and the
observed groundwater levels in the shallow (solid curve) and deep (dotted curve) Xinming wells.

Figure 9a–d show the distribution of corrected groundwater levels for March, June,
August, and September of 2017 in the study area. In general, the groundwater flow follows
a trend from upstream to downstream, with a higher hydraulic gradient near the river
channel than the area away from the main channel. The area near Min_01 and Min_02 show
a pattern suggesting that the groundwater is recharged from the river channel. Yet, in the
downstream area near Min2_05 and Min3_01, the groundwater discharges into the aquifer
under the river channel. The groundwater level in March of 2017 was about 3 m lower than
the groundwater levels in June, August, and September of 2017. The groundwater level
difference between March of 2017 and August of 2017 is about 2 m in the upstream area
near Min_01 and about 4 m in the downstream area near Min2_04.
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4. Discussion

Besides the seasonal variation in groundwater levels, it is necessary to know the water
storage capacity of the regions for potential groundwater reservoirs. The specific yield, Sy,
which denotes the ratio of water volume that can be drained from the total volume of rock
or soils, is the most important hydrogeological parameter in the assessment of the storage
potential for the groundwater reservoirs.

We can obtain the theoretical specific yield, Sy, by calculating the difference between
the saturated water content, θs, and the residual water content, θd:

Sy = θs − θr. (7)

Table 3 lists the estimated theoretical specific yield, Sy, at different survey sites, and
Figure 10a shows the distribution of the theoretical specific yield in the study area. In
general, the theoretical specific yields are higher in the northeastern part of the basin than
those in the southwestern part of the basin. The highest specific yield is about 0.21 at
the Min_01 and Min_02 sites, and the lowest one is 0.11 at Min2_01. The trend of the
theoretical specific yields indicates the sediment distribution pattern from the upstream to
the downstream parts of the Choushui River in the Minzu Basin. In addition, we observed
that specific yields in the area near Min_03, Min2_06, and Min_04 are lower than the
corresponding yields in nearby sites.

The theoretical specific yield, Sy, refers to the maximum groundwater volume ratio
that can be yielded from or stored in an unconfined aquifer if the aquifer can be totally
dried out. However, in natural conditions, groundwater volume ratios that can be pumped
from or stored in a sediment/rock matrix cannot reach a specific yield because of capillary
fringes in the vadose zone. Thus, in the current study, we define the specific yield capacity,



Water 2022, 14, 420 14 of 18

Sc, as the natural specific yield corresponding to the capillary fringes in the vadose zone.
With the Brooks-Corey model in Equation (5), one should be able to calculate Sc as:

Sc =
1
H

∫ H

0
(θs − θ(h))dh ∼=

1
H ∑H

0 (θs − θ(h))∆h, (8)

where H is the depth of the groundwater, θ(h) is the volumetric water content at a different
depth, h, and ∆h is the incremental depth. Table 3 lists our calculation of Sc for different
survey sites in different months during the study period. The specific yield capacity
at different sites varies between 0.06 and 0.16 in the study area. With the exception of
the Min_05, Min_08, and Min2_02 sites, most sites generally have a higher Sc value in
the wet season (June, August, and September) than in the dry season. The Min2_02 site
exhibits almost the same Sc value during the wet and dry seasons. Min_08 exhibits a
lower Sc value in June and August than in September, when the site reaches its maximum
value, 0.15. Unlike the other sites, Min_05 exhibits higher Sc levels in the dry season than
in the wet season. The fact that the specific yield capacity varies between the wet and
dry seasons may indicate the hysteresis behavior of the drying and wetting curves of the
Brooks-Corey model.

Table 3. The estimated theoretical specific yields and specific yield capacities collected at survey sites
during December of 2016 and March of 2018.

Survey
Line

Theoretical
Specific Yield

Specific Yield Capacity
Maximum AverageDecember

2016
March
2017

June
2017

August
2017

September
2017

January
2018

March
2018

Min_01 0.21 0.06 0.09 0.12 0.14 0.12 0.06 0.08 0.14 0.09
Min_02 0.21 0.13 0.14 0.14 0.10 0.16 0.13 0.15 0.16 0.13
Min_03 0.17 0.11 0.08 0.08 0.12 0.12 0.09 0.07 0.12 0.10
Min_04 0.19 0.12 0.06 0.10 0.14 0.12 0.14 0.11
Min_05 0.20 0.10 0.15 0.11 0.12 0.07 0.13 0.12 0.15 0.11
Min_08 0.22 0.13 0.12 0.11 0.11 0.15 0.15 0.12

Min2_01 0.11 0.06 0.09 0.09 0.09 0.08 0.07 0.09 0.08
Min2_02 0.12 0.08 0.07 0.08 0.08 0.08 0.07 0.08 0.08
Min2_03 0.13 0.06 0.09 0.09 0.09 0.09 0.08
Min2_04 0.14 0.10 0.11 0.11 0.11 0.11 0.11
Min2_06 0.19 0.09 0.11 0.07 0.13 0.13 0.10
Min3_01 0.14 0.11 0.10 0.08 0.08 0.06 0.11 0.08

Figure 10b shows the distribution of the averages, and Figure 10c shows the maximum
specific yield capacities. Although the specific yield capacities vary during the research
period for most of the survey sites, the average and maximum specific yield capacities
have a distribution pattern similar to that of the theoretical specific yields. However, the
estimated values for the maximum and average specific yield capacities are, respectively,
only about 72% and 60% of the theoretical specific yields. The specific yield estimated
from the in situ pumping test in the Xinming well is about 0.157, and is close to the
maximum specific yield capacities of Min_01 (Sc = 0.14) and Min_02 (Sc = 0.16), as shown
in Table 3. These findings suggest that the specific yield capacity is consistent with the
value estimated from the in situ pumping test, and is only three quarters to two thirds of the
theoretical specific yield. When evaluating potential groundwater reservoirs, one should
take this difference into account. The aquifer area of the Minzu Basin is about 69.8 km2.
If we use the maximum Sc for the estimation, the water volume that can be stored in the
unconfined aquifer in the Minzu Basin is about 8,716,000 m3 for one meter of increase
in the groundwater level. The estimated value is similar to the estimation by Hsiao and
Chang [25], who conducted time-lapse gravity measurements.
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The spatial distribution of the hydrogeological parameters of the unconsolidated
sediments is often subject to the deposition patterns of river systems, and it is important to
consider when planning the artificial recharge surface ponds effectively for the potential
groundwater reservoirs. In theory, the specific yields should decrease from upstream to
downstream, with the contours appearing to be slightly concave as one moves further
upstream along the Choushui River, since the river channels consists of mainly the coarser
materials, more so than the overbank deposits. Yet the pattern associated with the contours
of specific yields is not only concave along the river, but also along the direction from
Min_05 to Min_08. In addition, the pattern exhibits a lateral variation in the direction
perpendicular to the river, with a lower specific yield at Min_03, and is not consistent with
the current channel distribution patterns. We tried to overlap the specific yield contours
with the old river channels that were mapped in 1904, as shown in Figure 11. Unlike
today’s Choushui River channel, which was artificially modified, the old map shows that
the natural Choushui River branched into two channels 130 years ago. Additionally, an
area with low specific yields is located between the two main channels. The difference in
groundwater levels between the wet and dry seasons also suggests a greater change at
Min_03, which exhibits lower specific yields than the neighboring site in Figure 11. The
findings from the old map help to explain the special contour pattern of the specific yields.
The “ancient” river channels show higher specific yields than their neighboring areas.
Additionally, the old map that presents the nature system before the artificial modification
of channels should be taken into account when planning the surface recharge activities for
the groundwater reservoirs.
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5. Conclusions

To evaluate a potential groundwater reservoir, we used time-lapse resistivity mea-
surements collected at 12 sites in the Minzu Basin. Thus, we specifically estimated both
groundwater levels and specific yields for various months from 2016 to 2018. Using Archie’s
law, we converted the time-lapse resistivity measurements into water content values. We
then estimated the groundwater levels and the specific yields with the Brooks-Corey (BC)
model and water content vertical profiles.

The contour maps of the time-lapse groundwater levels show that the groundwater
flowing downstream had a higher hydraulic gradient near the river channel than in the
area away from the main channel. On average, the groundwater level in the dry season
(i.e., from December to March) is about 3 m lower than in June, August, and September.
From the BC model, we also estimated the theoretical specific yields that might provide
crucial information about the potential groundwater reservoir. The difference between
the residual and saturated water content of the fitted BC model is key to obtaining the
theoretical specific yield at different survey sites. Additionally, using the BC model, we
calculated specific yield capacities, which represent the nature of the storage capacity in the
aquifer, across several months. The estimated theoretical specific yields for both the Min_01
and Min_02 sites are 0.21. However, the estimated maximum specific yield capacities for
the Min_01 and Min_02 sites are about 0.14 and 0.16, respectively, and are consistent with
both the specific yields estimated from the in situ pumping test in the Xinming observation
well (Sy = 0.157) and the maximum specific yield capacities estimated from the resistivity
measurements. The findings suggest that the specific yield capacities are consistent with
the values estimated from the in situ pumping tests, and are only three quarters to two
thirds of the theoretical specific yields. Using the estimation from the maximum specific
yield capacities, there is about 8,716,000 m3 of water that can be stored in the unconfined
aquifer in the Minzu Basin if the groundwater level is increased by one meter.

The distribution pattern of the specific yield contours reveals the natural river channel
pattern shown in the old map completed in 1904, since the current river channel has been
artificially modified over the past 100 years. The natural Choushui River branched into
two channels in the Minzu Basin on the 1904 map before the human modification. The
“ancient” river channels thus show higher specific yields than their neighboring areas. Our
study shows that resistivity surveys provide good estimations of hydraulic parameters for
preliminary evaluations, especially in an area in which few observation wells are available.
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